SVM的参数优化及在耐热酶和常温酶分类中的应用
Parameters Optimization of Support Vector Machine for Discriminating Thermophilic and Mesophilic Enzyme
DOI:
中文关键词: 支持向量机 氨基酸含量 分类 参数优化
英文关键词: SVM percentage of amino acid discrimination parameters optimization
基金项目:江南大学创新团队基金项目(JNIRT0702);江南大学自然科学预研基金项目
作者
单位
张正阳
江南大学,信息工程学院,江苏,无锡,214122
须文波
丁彦蕊
摘要点击次数: 199
全文下载次数: 574
中文摘要:
氨基酸的组成是影响蛋白质耐热性的主要因素之一,所以以20种氨基酸所占比例作为特征向量,利用支持向量机(Support vector machine,SVM)预测蛋白质的耐热性。在比较了几何方法、SVM-KNN和重复训练3种参数优化的方法之后,从中选择了几何方法来优化SVM分类器的参数,并使预测率从85.4%提高到88.2%。从预测率上可知:(1)几何方法优化SVM参数可以有效地提高预测率;(2)氨基酸含量与酶的耐热性之间存在极强的相关性。
英文摘要:
It was widely accepted that amino acid composition play vital role on the protein thermostability.In this manuscript,20-amino acid composition in their protein sequence was chosen as the feature vector of SVM and used to predict the protein thermostability by SVM.the accuracy increased from 85.4% to 88.2% by using the geometrical method to optimize SVM parameter.Furthermore,it could be acquired following conclusions:(1) geometrical method is an efficient method to improve the accuracy of SVM parameters;.(2) there is a very close relationship between percentage of amino acid and enzyme thermostability.
查看全文 查看/发表评论 下载PDF阅读器